MEDICINE AND SURGERY "F"
Course of LABORATORY MEDICINE
Jaundice and the Catabolism of the Heme

THE REGISTRATION OF ATTENDANCE TO THIS ON-LINE LECTURE IS ACTIVE!
      To register your's attendance please type in your matricola number
      Notice that your attendance will be registered only if you completed the reading, questions, and audios, and that you cannot interrupt and resume the session (but you can repeat it as many times as you like). Remember to press the button before leaving this page! A confirmation message will appear at the end of this page.
      A comment section has been added at the end of this lecture. Adding a comment or question does not require registration with your matricola number, feel free to comment whenever you like.

      Some 400 mg of heme are degraded and excreted daily by healthy adults as bilirubin derivatives. Over 70% of the heme derives from the turnover of hemoglobin (i.e. from aged erythrocytes or erythrocyte precursors), the rest from other hemoproteins present in all the body cells.
 
      Free heme is toxic because of its ability to activate O2 to superoxide and peroxide anions. It is transported in the blood plasma bound to hemopexin or albumin and removed by the cells of the reticuloendothelial system, in the liver or elsewhere. The same cells are able to endocytose and degrade aging red cells. Reticuloendothelial cells degrade the heme with the enzyme heme oxygenase, that opens the tetrapirrole ring and releases iron (which is recycled). A product of this reaction is the toxic gas CO; this is the only reaction known to produce CO in our body. The heme derivative thus obtained is called biliverdin and is further processed to bilirubin by the enzyme biliverdin reductase.
 
      Bilirubin is water insoluble and when it is released by the reticoloendothelial cells, is taken up by albumin and carried to the liver (many reticuloendothelial cells do actually reside in the liver). Glucuronyl transferase, an enzyme of the hepatocyte, conjugates one or two molecules of glucuronic acid to bilirubin. The reaction products, bilirubin-glucuronide or bilirubin-diglucuronide, are soluble in water and are excreted via the bile in the faeces.



Audio: the heme degradation pathway
 
      During the intestinal transit, bilirubin is partially metabolyzed by the bacterial flora and converted to other pigments called stercobilinogens and urobilinogens, thay may be partly readsorbed by the gut and excreted in the urine. Bilirubin and the bilinogens are of a brownish colour, and are responsible for the colour of the faeces. If readsorbed and excreted in the urine, they cause the urine to become dark brown.
 
      Bilirubin is normally present in the human blood, in two forms: (i) unconjugated bilirubin is bound to albumin and is present during its transfer from reticuloendothelial cells to the liver. This form of bilirubin is also called indirect (because it requires ti be activated in order to react with the standard diazo reagents) or pre-hepatic. (ii) Conjugated bilirubin is present in the blood because of reabsorption from the smallest biliary vessels. This form is also called direct or post-hepatic.
 
      JAUNDICE (or ICTERUS)
      In the healthy adul the total serum concentration of bilirubin is <1 mg/dL, mostly due to unconjugated bilirubin in transit from the spleen or other reticuloendothelial system sites to the liver. Conjugated bilirubin is <0.3 mg/dL. In the newborn, especially the premature newborn, the serum bilirubin may be significantly higher, up to 5-7 mg/dL.
      Bilirubin concentration may be increased because of several reasons; above 2 mg/dL it causes a yellow staining of the eye sclera, the skin and all visible tissues rich in elastin, to which it binds (e.g. the frenulus of the tongue). Ths condition is called jaundice.
Audio: bilirubin and jaundice


POSSIBLE CAUSES OF HYPERBILIRUBINEMIA
Bilirubin type Possible causes
unconjugated hemolysis
Gilbert's syndrome (congenital, benign, due to mildly reduced activity of glycuronyl transferase)
Crigler-Najjar syndrome type I (hereditary, autosomal recessive, lethal, due to complete absence of glycuronyl transferase)
Crigler-Najjar syndrome type II (hereditary, autosomal dominant, due to severely reduced activity of glycuronyl transferase)
Primary shunt hyperbilirubinemia (familial, benign)
conjugated Dubin-Johnson syndrome (hereditary, autosomal recessive, benign)
Rotor syndrome (hereditary, benign)
both intrahepatic cholestasis, causing bile reabsorption in the blood. May occur because of cholelithiasis, hepatitis, cirrosis, biliary cancer, etc.

Audio: jaundice due to increase of unconjugated bilirubin

Audio: mixed and conjugated bilirubin jaundices

      LABORATORY EVALUATION OF LIVER FUNCTION
      Jaundice is a common sign that may be caused by a host of diseases (see Table). It is a generic clinical sign, that may accompany a host of hepatic conditions (and some non-hepatic ones); the diagnosing the underlying disease is usually based on a series of clinical tests ordered sequentially to exclude or ascertain the different possibilities. Jaundice occurring in an adult patient is first evaluated by ascertaining two points: which type of bilirubin is increased, and whether the condition is acute or chronic. In the presence of jaundice (even mild jaundice), laboratory signs of liver damage should be systematically looked for.

      Serum bilirubin concentration: in the healthy adult does not usually exceed 1 mg/dL, of which one third is due to conjugated bilirubin and the remaining two thirds to unconjugated bilirubin. Jaundice becomes visible (initially in the sclerae) when bilirubin concentration in the serum exceeds 2 mg/dL. Unconjugated bilirubin is mostly bound to albumin and must be solubilized with organic solvents for the test. The standard test for bilirubin is based upon the reaction of this compound with p-diazobenzenesulfonic acid (van den Bergh reaction); the reaction product is red-colored and can be measured by absorption spectrophotometry. This reaction transfers the diazo-dye to bilirubin:

      Bilirubin conjugated with glicuronid acid reacts with diazo-compounds in water and is thus called "direct" bilirubin; the reaction of unconjugated bilirubin requires that ethanol is added as a co-solvent, thus unconjugated bilirubin is also called "indirect" bilirubin.

      Conjugated bilirubin is water-soluble and is filtered by the kidney; it causes the urine to be yellowish. In case of obstructive jaundice and cholestasis, conjugated bilirubin is reabsorbed in the serum and causes the urine to become dark, whereas the faeces become paler.

Audio: Laboratory methods for the determination of bilirubin

      Aminotransferases: aspartate aminotransferase (AST, GOT) and alanine aminotransferase (ALT, GPT) are intracellular enzymes present in several tissues, but most notably in the hepatocytes. Diseases that cause necrosis of hepatocytes (e.g. viral hepatitis, cirrosis, liver cancer) they are released in the serum. Their serum concentration in the healthy adult is non-zero may because of the physiological turnover of liver cells but should not exceed 40 u/mL; in viral hepatitis may exceed 400 u/mL. Jaundice is often associated to increase of aminotransferases, but the reverse is not true, because of two reasons: (i) liver damage may be sufficient to yield a significant increase in the enzymes, but insufficient to cause a significant increase of bilirubin concentration; and (ii) damage of tissues other than the liver may cause increase of the aminotransferases (e.g. the heart and the central nervous system).
      If viral hepatitis is suspected, the viral antigen, antiviral antibodies and viral DNA may be looked for. Viral hepatitis A is transmitted by contaminated food and water, has short incubation time and is relatively benign; the characteristic viral antigen HAAg is found in the serum, stool and liver tissue. The disease runs an acute course and there is non chronic carrier state; occasionally it may cause epidemic outbreaks in regions with poor sanitation.
      Viral hepatitis B is transmitted by blood transfusions and contact with infected blood, runs an acute course but may chronicize and is associated to chronic hepatitis and liver cancer. Diagnosis is established by the finding of the specific viral antigens HBsAg (Australia antigen), HBcAg, HBeAg and the delta antigen.
      Viral hepatitis C resembles B under many aspects but is due to a different virus. Diagnosis relies on the demonstration of specific antibodies by immunassay, or on the sequencing of viral RNA from the serum samples.

      Alkaline phosphatase is characteristic of the biliary duct cells and is increased in many cases of obstructive jaundice and liver cancer. Other organs that may release this enzyme in the serum are pancreas, lung and bone.

      gamma-Glutamyl transpeptidase is increased in many cases of liver disease (e.g. ethilism, drug toxicity, etc.).

      Other tests: if an obvious anatomic lesion is suspected (e.g. biliary cancer, cirrosis) imaging methods (MRI, echography) and liver biopsy should be considered.

Questions and exercises:
1) Bilirubin concentration in the serum of healthy adults should be:
less than 1 mg/dL, mostly unconjugated
less than 1 mg/dL, mostly conjugated
less than 2 mg/dL, mostly unconjugated
less than 2 mg/dL, mostly conjugated

2) The most common type of jaundice is mixed (i.e. due to both conjugated and unconjugated bilirubin), because lesions which damage the epatocyte may often damage also, or compress, the intraepatic bile ducts. Epatocyte damage causes increase of unconjugated bilirubin; compression of the intraepatic bile ducts causes reabsorption of conjugated bilirubin in the blood. An example of this condition is observed in
Crigler-Najjar type I syndrome
Viral hepatitis
Rotor syndrome
Hemolytic crisis

3) The most relevant enzymes released in theient i serum as a consequece of diseases causing liver cells death are:
Aminotransferases (ALT, AST), alkaline phosphatase, gamma-glutamyl traspeptidase (gammaGT)
Aminotransferases (ALT, AST), acidic phosphatase, gamma-glutamyl traspeptidase (gammaGT)
Aminotransferases (ALT, AST), alkaline phosphatase, cytochrome-c
Aminotransferases (ALT, AST), lactate dehydrogenase (LDH), creatine kinase (CPK)

4) Jaundice and liver enzymes lead you to suspect that your patient is affected by acute viral hepatitis. Which Laboratory exam(s) would you carry out to confirm your diagnosis:
Antibodies against the different viruses that cause hepatitis
Search of the viral RNA by reverse transcriptase and PCR followed by DNA sequencing
Assay of viral antigen(s)
All the preceding tests

Attendance not registered because matricola was not entered.

You can type in a comment or question below (max. length=160 chars.):



Comments and questions on this lecture:

1zqjoy39;34;60;x62;:1zqjoy;962;:/1zqjoy;9
1zqjex39;34;60;x62;:1zqjex;962;:/1zqjex;9
1zqjnv39;34;60;x62;:1zqjnv;962;:/1zqjnv;9
1zqjsf39;34;60;x62;:1zqjsf;962;:/1zqjsf;9
1zqjts39;34;60;x62;:1zqjts;962;:/1zqjts;9
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
numL
1446
numL39;34;,))(,.,"
numL39;ouegJs60;39;34;62;UxkkLb#62;UxkkLb
numL
numL39; AND 4925=8697 AND 39;DREE39;=39;DREE='DREE
numL39; AND 2549=2549 AND 39;jWZS39;=39;jWZS='jWZS
numL39; AND 4458=7634 AND 39;oxWw39;=39;oxWw='oxWw
numL39; AND 4331=5742 AND 39;RifU39;=39;RifU#39;RifU
numL39; AND 2549=2549 AND 39;WXNS39;=39;WXNS#39;WXNS
numL39; AND 8234=3273 AND 39;ZgNZ39;=39;ZgNZ#39;ZgNZ
numL AND 3699=8430 AND 9888 BETWEEN 9888 AND 988888
numL AND 2549=2549 AND 1308 BETWEEN 1308 AND 130808
numL AND 4463=9322 AND 4439 BETWEEN 4439 AND 443939
numL AND 6016 BETWEEN 1545 AND 1545
numL AND 2549 BETWEEN 2549 AND 2549
numL AND 9749 BETWEEN 6809 AND 6809 fROzOz
numL AND 2549 BETWEEN 2549 AND 2549 XtXNXN
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
OBVt
7476
OBVt34;39;.'.),(.)
OBVt39;MzmfBw60;39;34;62;eXmRJT#62;eXmRJT
OBVt
OBVt39; AND 9764=7309 AND 39;KEFW39;=39;KEFW='KEFW
OBVt39; AND 3210=3210 AND 39;tmuL39;=39;tmuL='tmuL
OBVt39; AND 2163=9083 AND 39;sYSQ39;=39;sYSQ='sYSQ
OBVt39; AND 2712=2218 AND 39;sHRg39;=39;sHRg#39;sHRg
OBVt39; AND 3210=3210 AND 39;SXWL39;=39;SXWL#39;SXWL
OBVt39; AND 5625=9672 AND 39;ampf39;=39;ampf#39;ampf
OBVt AND 8118=1827 AND 6053 BETWEEN 6053 AND 605353
OBVt AND 3210=3210 AND 7551 BETWEEN 7551 AND 755151
OBVt AND 1487=6746 AND 6621 BETWEEN 6621 AND 662121
OBVt AND 4445 BETWEEN 5850 AND 5850
OBVt AND 3210 BETWEEN 3210 AND 3210
OBVt AND 3890 BETWEEN 7272 AND 7272
OBVt AND 6387 BETWEEN 5720 AND 5720 RUOmOm
OBVt AND 3210 BETWEEN 3210 AND 3210 nHGIGI
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
ozsD
4180
ozsD34;39;34;,).'.
ozsD39;uduLAx60;39;34;62;zKsUZl#62;zKsUZl
ozsD
ozsD39; AND 3009=3345 AND 39;VUSi39;=39;VUSi='VUSi
ozsD39; AND 2484=2484 AND 39;arZp39;=39;arZp='arZp
ozsD39; AND 3348=2086 AND 39;ximp39;=39;ximp='ximp
ozsD39; AND 1334=2560 AND 39;zeIf39;=39;zeIf#39;zeIf
ozsD39; AND 2484=2484 AND 39;tFiF39;=39;tFiF#39;tFiF
ozsD39; AND 5618=5284 AND 39;Aawp39;=39;Aawp#39;Aawp
ozsD AND 1449=3995 AND 6829 BETWEEN 6829 AND 682929
ozsD AND 2484=2484 AND 8666 BETWEEN 8666 AND 866666
ozsD AND 3798=4226 AND 3196 BETWEEN 3196 AND 319696
ozsD AND 3124 BETWEEN 3506 AND 3506
ozsD AND 2484 BETWEEN 2484 AND 2484
ozsD AND 4721 BETWEEN 1284 AND 1284
ozsD AND 1661 BETWEEN 3936 AND 3936 ZwEUEU
ozsD AND 2484 BETWEEN 2484 AND 2484 kQpapa
ozsD AND 8948 BETWEEN 6063 AND 6063 bWcycy
ozsD AND 81 BETWEEN 81 AND 81 aWeYeY



      Home of this course